1986: The Hydrographic Data Problem

The table below gives the depth Z of water in feet for surface points with rectangular coordinates X, Y in yards. The depth measurements were taken at low tide. Your ship has a draft of five feet. What region should you avoid within the rectangle $(75,200) \times(-50,150)$?

X	Y	Z
129.0	7.5	4
140.0	141.5	8
108.5	28.0	6
88.0	147.0	8
185.5	22.5	6
195.0	137.5	8
105.5	85.5	8
157.5	-6.5	9
107.5	-81.0	9
77.0	3.0	8
162.0	-66.5	9
162.0	84.0	4
117.5	-38.5	9

Comments by the Contest Director

The problem was contributed by Richard Franke (Dept. of Mathematics, Naval Postgraduate School, Monterey, CA). His paper [1982] compares 34 approaches to this problem.

Two points on the suggested outline for papers received scant attention: testing and (especially) stability. In particular, none of the papers questioned how the depth data-all depths were given in exact numbers of feet-were arrived at: rounding down? truncation? rounding up?

Although the concept of stability (conditioning, robustness, sensitivity, well-posed, etc.) was introduced by the great Jacques Hadamard in 1923, it seems to have difficulty establishing itself in the undergraduate mathematics curriculum.

Reference

Franke, Richard. 1982. Scattered data interpolation. Mathematics of Computation 38: 181-200.

